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lon therapy history

1946: Robert Wilson (Harvard) proposed use of
protons in treating tumors

| 954: first patient treated with protons at Berkeley

1 990: first dedicated proton center - Loma Linda
University (south CA)

| 994: first ion center - Chiba, Japan
1997: second ion center - GSI Darmstadt, Germany

2004: 23 protons centers and 3 ion centers in
operation worldwide
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Intro

® Y rays are easy to obtain from radioactive sources
such as ¢°Co; electrons can be produced to MeV by
inexpensive linear accelerators

® disadvantages: they deposit energy close to surface

® Charged particles deposit large energy near the end
of their trajectories (Braag peak)

® heavy ions are even superior to protons in treating
deep-seated, well-localized tumors, due to
ionization increasing with z?



[physics/0004015]

Energy loss

® photon: [ = le ™ H = ﬂ(E,Z)

® charged particle (Bethe-Bloch):
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photon mass attenuation
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energy loss of charged particles

Energy Loss of lons in Matter
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Fig. 2: Energy loss of ions in matter as a function of their energy
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depth and incident energy
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Fig. 3: Energy loss of carbon-ions ('2C)
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Tracks In Tissue

higher Z, higher

degree of ionization

DNA

@M Fig. 4: Sketch of a proton and a carbon

nucleus track in tissue. The fuzziness of the
tracks is caused by short range d-rays
proton carbon nucleus
~ 250 pm ~1 nm

(0-rays = electrons ejected from ionization)
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Carbon advantages

Carbon’s radiation damage is repairable to a large extent in
the entrance channel of the beam, and becomes irreparable
only at the end of the beam's range - in the tumor itsellf.

lighter particles such as protons cause fewer double-strand
breaks in DNA than heavier ones like carbon.

Carbon ions do not scatter as much as lighter particles.

Heavier ions, such as '°Ne, tend to fragment. Carbon does
fragment too but its fragmentation products can be

detected by PET.

source: “GSl| treats cancer tumors with carbon ions”

CERN Courier, vol 38,no 9
9
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Positron Emission Tomography

part of '?C ions fragment into
lighter ''C and '°C ions. these ions
emit positrons.

PET = e + e --> 2y

PET allows “live” beam monitoring
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Production of particle beams
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Fig. 5: Sketch of a typical set-up for the acceleration of
heavy ions (not all components are shown)



Relative Dose
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Bragg peak
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Fig. 6: Comparison of depth-dose curves of neutrons, Y-

rays (produced by a 8 MV driven X-ray tube), 200 MeV
protons, 20 MeV electrons and '*?Ir-y-rays (161 keV)
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protons vs. photons

® protons cause less
damage on entrance
(low plateau)

® deposit more energy on
deep-seated target
(Bragg peak)
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relative dose
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target is the
Fig. 7: Sketch of typical dimensions of biological targets ’ Cel I’S DNA
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carbon ions are suited to destroy both
strands. heavier ions can cause too much
irreparable damage to surrouding tissues
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Raster scan

vertical and horizontal ~ 50 energy steps

magnetic deflection
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Raster scan animation

http://www.gsi.de/portrait/Broschueren/Therapie/RasterScan.mpg
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relative dose
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Fig. 9: Superposition of Bragg-peaks by energy variation



[physics/0004015]

tumour Fig. 10:

dose
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The position of the Bragg-peak can be adjusted
by energy selection to produce a maximum
damage at the tumor site (here in the lung)

Mapping of a brain tumor with ionisation
from heavy ions. Some damage at the
entrance region cannot be avoided
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before and after 6 weeks of carbon therapy
(at GSI)
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Current heavy ion facilities
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Planned projects

e HICAT (Heavy lon accelerator light

ion CAncer Treatment) - University
Clinic Heidelberg, Germany - 2007

® European Network for LIGht ion

Hadron Therapy (ENLIGHT) - 2006 W
-2008
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Summary

dE/dx profiles of charged particles make possible
to design precise particle beams to treat tumors.

heavy ions are suitable and effective for well
localized tumors.

Carbon ions open up treatment possibilities of
difficult tumors, and complement proton therapy.

Protons, however, will remain important for
many kinds of cancer as well as for treatment of
benign (non-cancerous) tumors.
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