Determination of hydrogen in niobium by cold neutron prompt gamma-ray activation analysis and neutron incoherent scattering R. L. Paul, H. H. Chen-Mayer, G. R. Myneni National Institute of Standards and Technology [AIP Conf. Proc. 671:151-161, 2002]

> Phy 224B Chapter 20: Applications of Nuclear Physics 24 March 2005 (unused)

Intro

- small interstitial hydrogen atoms cause "vacancies" in Nb crystal which lead to embrittlement and diminish superconducting abilities in Nb
- Two techniques for measuring H:
 - cold n prompt γ activation analysis (PGAA) (n, γ) process non-destructive, chemical form/shape not important, matrix independent, entire sample analyzed, fast, simultaneous for different isotopes
 - n incoherent scattering (NIS) incoherent scattering cross section of hydrogen >> absorption cross section - higher sensitivity and faster detection of H than PGAA - but signal is not specific to H, hence a H-less sample is needed to account for n scattering by other elements

Questions to Answer

- Does the acid treatment of the niobium introduce a measurable amount of hydrogen?
- Can vacuum heating remove hydrogen?

Neutron and Material

Niobium

- $_{41}$ Nb, atomic weight = 92.906
- soft, easily shaped
- low thermal neutron capture cross section
- At I atm, Nb has the highest critical temperature of the elemental superconductors, 9.3 K
- remains a superconductor even when inside high B field

Niobium

- treated with acid to remove surface impurities
- operating temperatures 2 K <= T <= 4.2 K
- drop in superconductor's Q-value observed at 75 K <= T <= 130 K; attributed to hydride precipitation
 Q (quality) factor

= reactance/resistance

= stored energy/energy loss rate

NCNR

NIST Cold Neutron Research Guide Hall

http://www.ncnr.nist.gov/instruments/coldinstr.html

PGAA

neutron is captured, photon is promptly emitted with energy related to binding energy of added neutron

PGAA

Ge gamma detector

Fig. I: cold neutron PGAA spectrometer

- aircraft industry:
 - hydrogen embrittlement of titanium alloy jet engine turbine blades
 - hydrogen mass fraction of hydrogen-doped titanium alloy standard reference mateiral
- hydrogen in semiconductors and related materials (quartz, germanium, thin films on silicon wafers)
- hydrogen in fullerenes

Fullerenes are molecules composed entirely of carbon, taking the form of a hollow sphere, ellipsoid, or tube.

 PGAA + small angle neutron scattering (SANS) is used to study hydrogen impurity and pore size in nanocrystalline metals

SANS

measure large objects (1-10³ μm)

SANS: <u>http://www.ncnr.nist.gov/programs/sans/</u>

NIS

Method

- 5 slabs of ultra-pure niobium, each ~ 10 g
- degassed at Jefferson Lab by heating in hot vacuum furnace (for ~ 6 h) to remove hydrogen

Vacuum Heating (Degassing)

Jefferson Lab's vacuum furnace

designed to operate at 10⁻⁸ torr

extending from the top of each niobium insert are a series of notches which are bent over to seperate inserts together.

Results

Fig. 3: PGAA spectrum (H energy region) of Nb sample 4 after 1st vacuum heating (top), and then after acid treatment (bottom).

 Fig. 4: Top: PGAA spectrum (H energy region) of Nb sample 4 after the 2nd vacuum heating.
Bottom: PGAA spectrum of Nb sample 5 after 2nd degassing and 2nd acid treatment

Treatment Condition

Fig. 5: The change in H concentration in Nb samples #4 (left) and #5 (right) relative to that after the 1st degassing as determined by PGAA. The results obtained after the 1st H loading are expressed as the "upper limit", since the changes observed are within the measurement uncertainty. The significant changes occurred only after the 2nd degassing for #4, and 2nd H loading for #5. PGAA uncertainties are 2s based on propagation of counting statistics and uncertainties in element sensitivities, NIS uncertainties are 2s based on the propagation of uncertainty in the polypropylene film thickness.

Conclusion

- amount of H did not show correlation with time or temperature of initial degassing
- H content was not correlated with duration of initial acid treatment
- significant gain of H in sample 5 (after 2nd vacuum heating and 2nd acid treatment)
 - 800 celsius heat removed strongly bound hydrogen, activating sites where H can be picked up by Nb upon subsequent acid treatment

Answers

I. Does acid treatment of Nb introduce a measurable amount of H?

2. Can vacuum heating remove H?

• answers:

- NO for Ist cycle of treatment
- YES for 2nd cycle

Resources

- http://www.ncnr.nist.gov/
- http://www.mrl.ucsb.edu/~pynn
- http://www.ansto.gov.au/ansto/bragg/