Asymptotic Freedom [Frank Wilczek: hep-ph/0502113] Nuclear Group Journal Club 23 March 2005 (unfinished, unused)

Outline

- Paradoxes
 - Quarks' lack of radiation
 - Quantum field theory

Nucleus

- I920's: Rutherford, Geiger, Marsden protons
- 1932: Chadwick neutrons
- 1960s: Gell-mann and Zweig quarks

the Quark paradox

- no individual quarks observed (confinement), fractional charges (2/3 or 1/3 of e charge), do not follow quantum statistics (spin-1/2 quarks should have antisymmetric wavefunction, but baryons require symmetric wave functions)
- Friedman, Kendall, Taylor (SLAC) probed protons by photons - found that when the quarks are hit, they move like free particles. no strong radiation.

the paradox of SR and QM

- special relativity fast
- quantum mechanics small
- tension = treatment of space and time
 - 3 + I nobel prizes common problem ultraviolet divergences

Dirac (1933)

 uncertainties of position and velocity faster than light - antiparticles

UV divergences

- special relativity deals with motion of particles moving at v ~ c
- SR introduces energy fluctuations over brief time intervals - generalizes 'x-p complementarity' in non-relativistic QM
- energy can be converted to virtual particles
 "vacuum" is densely populated with virtual particles

UV divergences (continued)

- interaction between real and virtual particles change properties of the real particles - but the changes are divergent due to high-energy virtual particles
- this problem descends from Planck's "ultraviolet catastrophe" of black-body radiation (high energy modes of EM field occur as thermal fluctuations)

Energy Fluctuations

- in black body radiation: equilibrium at finite temperature requires infinite energy in the high energy modes
- problem: small fluctuations with rapid variations in space and time are possible
- discreteness in quantum theory eliminates such possibility since fluctuation size has a lower bound imposed
- large fluctuations = rare in thermal equilibrium and don't cause problems

Quantum fluctuations

- more efficient than thermal fluctuations at exciting the high-energy modes (virtual particles)
- divergence of energy of vacuum (zero-point energy)

Renormalization

- interaction with high-energy virtual particles cause divergent corrections - but the same divergences occur repeatedly in different physical processes (e.g., in QED, corrections in m and q of electron)
- apply a cut-off to exclude high-energy modes, then remove the cut-off at the end

Feynman, Schwinger, Tomonaga (1965)

- quantum electrodynamics
- found a way to write down corrections due to interactions with 'internal loops' in Feynman diagram

't Hooft and Veltman (1999)

- electroweak interaction
- shows that renormalization works with many more theories, e.g., Glashow, Salam, and Weignberg's spontaneously broken gauge theories (later become electroweak theory)

Landau's Problem

- if influence (e.g., electric charge) is non-zero, virtual particles accumulate around a real particle this is called 'screening'
- screening only terminates when the particle and its virtual cloud is of no interest to additional virtual particles - but in then there would be no interaction
- arbitrary number of virtual particles lead to nonsensical results

Screening

- in QED and electroweak small finite number of virtual particles = calculations fit experiments very well
- however, we cannot expect that lots of strongly-interacting virtual particles won't come into play
- QM and SR seemed to lead to QFT, but QFT failed because of screening

Asymptotic Freedom (Antiscreening)

- antiscreening is the answer to the paradoxes
- screening: from a large charge at center, small observable influence far away
- antiscreening: a cloud of virtual particles enhanced the charge's power - the stronger influence the further away from the source ("thundercloud")

Source and Antisource

- confinement of quarks suggests that in Nature, there are sources (in this case, quarks) who cannot exist on their own
- we can avoid infinite growth of antiscreening thundercloud by putting an antiparticle nearby a source particle - when cloud of source overlaps anticloud of antisource, they cancel
- individual quarks and antiquarks would cause infinite disturbance, but together they can be accommodated with finite energy

Radiation explanation

- when Friedman, Kendall, and Taylor violently accelerated quarks no radiation
- asymptotic freedom: charge of individual quark is small, but at large distance, growing cloud drives up its power - the source itself is loosely bound, because of its small charge - in small range and brief time, quark behaves like a free particle
- the virtual particles adjust to this change by rebuilding new cloud, but this process does not involve significant radiation of energy and momentum

- theories that display asymptotic freedom are called nonabelian gauge theories, or Yang-Mills theories
- several kinds of colors
- several color-carrying gluons (unlike photons)
- virtual gluons antiscreening (absent in QED)

- strong interaction theory must accommodate baryons (3q) and mesons (q qbar)
- color charges of 3q must cancel SU(3) gauge group 3 colors, 8 gluons

Paradigm of Quarks and Gluons

• e+ e- -> 2 jets, 3 jets, 4 jets

Quantum Chromodynamics

SU(3) Symmetry

Asymptotic Freedom

Jets

Radiation

- hard redirects flow of energy and momentum
- soft produces new particles without changing the overall flow

Paradigm 3: Early U is simple

- before asymptotic freedom (1972): ultra high temperatures after Big Bang - lots of hadrons and antihadrons - extended strongly-interacting entities overlapping mess - Universe seemed difficult to figure out
- asymptotic freedom: strong interaction is simple quarks, antiquarks, gluons mostly free, with some rare hard interactions
- collision from STAR little big bangs inside the lab

Paradigm 4: Symmetry

- unified field theories
- supersymmetry
- axions
- symmetry loss

Unification

• Standard Model: $SU(3) \times SU(2) \times U(1)$

Axions

- Peccei-Quinn symmetry explains absence of undesired interaction
- axions very light, very weakly interacting

LHC

 to interpret LHC collisions, we have to understand how protons are assembled from quarks and gluons, and how quarks and gluons show up as jets